Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in Dictyostelium discoideum Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in Dictyostelium discoideum Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.

Auteurs : Paige K. Smith [Australie] ; Melodi G. Sen [Australie] ; Paul R. Fisher [Australie] ; Sarah J. Annesley [Australie]

Source :

RBID : pubmed:31100984

Descripteurs français

English descriptors

Abstract

The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative disorders with similar clinical manifestations whose precise mechanisms of disease are presently unknown. We created multiple cell lines each with different levels of reduction of expression of the gene coding for the type 2 variant of the disease, Tripeptidyl peptidase (Tpp1), in the cellular slime mould Dictyostelium discoideum. Knocking down Tpp1 in Dictyostelium resulted in the accumulation of autofluorescent material, a characteristic trait of Batten disease. Phenotypic characterisation of the mutants revealed phenotypic deficiencies in growth and development, whilst endocytic uptake of nutrients was enhanced. Furthermore, the severity of the phenotypes correlated with the expression levels of Tpp1. We propose that the phenotypic defects are due to altered Target of Rapamycin (TOR) signalling. We show that treatment of wild type Dictyostelium cells with rapamycin (a specific TOR complex inhibitor) or antisense inhibition of expression of Rheb (Ras homologue enriched in the brain) (an upstream TOR complex activator) phenocopied the Tpp1 mutants. We also show that overexpression of Rheb rescued the defects caused by antisense inhibition of Tpp1. These results suggest that the TOR signalling pathway is responsible for the cytopathological outcomes in the Dictyostelium Tpp1 model of Batten disease.

DOI: 10.3390/cells8050469
PubMed: 31100984
PubMed Central: PMC6562681


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in
<i>Dictyostelium discoideum</i>
Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.</title>
<author>
<name sortKey="Smith, Paige K" sort="Smith, Paige K" uniqKey="Smith P" first="Paige K" last="Smith">Paige K. Smith</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. paigeksmith81@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Melodi G" sort="Sen, Melodi G" uniqKey="Sen M" first="Melodi G" last="Sen">Melodi G. Sen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. mgsen@students.latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Paul R" sort="Fisher, Paul R" uniqKey="Fisher P" first="Paul R" last="Fisher">Paul R. Fisher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. P.Fisher@latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Annesley, Sarah J" sort="Annesley, Sarah J" uniqKey="Annesley S" first="Sarah J" last="Annesley">Sarah J. Annesley</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. S.Annesley@latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31100984</idno>
<idno type="pmid">31100984</idno>
<idno type="doi">10.3390/cells8050469</idno>
<idno type="pmc">PMC6562681</idno>
<idno type="wicri:Area/Main/Corpus">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000271</idno>
<idno type="wicri:Area/Main/Curation">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000271</idno>
<idno type="wicri:Area/Main/Exploration">000271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in
<i>Dictyostelium discoideum</i>
Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.</title>
<author>
<name sortKey="Smith, Paige K" sort="Smith, Paige K" uniqKey="Smith P" first="Paige K" last="Smith">Paige K. Smith</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. paigeksmith81@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Melodi G" sort="Sen, Melodi G" uniqKey="Sen M" first="Melodi G" last="Sen">Melodi G. Sen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. mgsen@students.latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Paul R" sort="Fisher, Paul R" uniqKey="Fisher P" first="Paul R" last="Fisher">Paul R. Fisher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. P.Fisher@latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Annesley, Sarah J" sort="Annesley, Sarah J" uniqKey="Annesley S" first="Sarah J" last="Annesley">Sarah J. Annesley</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. S.Annesley@latrobe.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="ISSN">2073-4409</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aminopeptidases (genetics)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Proliferation (drug effects)</term>
<term>DNA, Antisense (MeSH)</term>
<term>DNA, Protozoan (MeSH)</term>
<term>Dictyostelium (cytology)</term>
<term>Dictyostelium (genetics)</term>
<term>Dictyostelium (metabolism)</term>
<term>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Lysosomes (enzymology)</term>
<term>Mutation (MeSH)</term>
<term>Neuronal Ceroid-Lipofuscinoses (metabolism)</term>
<term>Optical Imaging (MeSH)</term>
<term>Phagocytosis (drug effects)</term>
<term>Phenotype (MeSH)</term>
<term>Phototaxis (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>Ras Homolog Enriched in Brain Protein (genetics)</term>
<term>Ras Homolog Enriched in Brain Protein (metabolism)</term>
<term>Serine Proteases (genetics)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN antisens (MeSH)</term>
<term>ADN des protozoaires (MeSH)</term>
<term>ARN messager (génétique)</term>
<term>Aminopeptidases (génétique)</term>
<term>Céroïdes-lipofuscinoses neuronales (métabolisme)</term>
<term>Dictyostelium (cytologie)</term>
<term>Dictyostelium (génétique)</term>
<term>Dictyostelium (métabolisme)</term>
<term>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases (génétique)</term>
<term>Expression des gènes (MeSH)</term>
<term>Imagerie optique (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Lysosomes (enzymologie)</term>
<term>Mutation (MeSH)</term>
<term>Phagocytose (effets des médicaments et des substances chimiques)</term>
<term>Phototaxie (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Prolifération cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Protéases à sérine (génétique)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (génétique)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminopeptidases</term>
<term>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases</term>
<term>RNA, Messenger</term>
<term>Ras Homolog Enriched in Brain Protein</term>
<term>Serine Proteases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Dictyostelium</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Dictyostelium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Proliferation</term>
<term>Phagocytosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phagocytose</term>
<term>Prolifération cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Dictyostelium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Aminopeptidases</term>
<term>Dictyostelium</term>
<term>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases</term>
<term>Protéases à sérine</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dictyostelium</term>
<term>Neuronal Ceroid-Lipofuscinoses</term>
<term>Ras Homolog Enriched in Brain Protein</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Céroïdes-lipofuscinoses neuronales</term>
<term>Dictyostelium</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>DNA, Antisense</term>
<term>DNA, Protozoan</term>
<term>Gene Expression</term>
<term>Gene Knockdown Techniques</term>
<term>Mutation</term>
<term>Optical Imaging</term>
<term>Phenotype</term>
<term>Phototaxis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN antisens</term>
<term>ADN des protozoaires</term>
<term>Expression des gènes</term>
<term>Imagerie optique</term>
<term>Lignée cellulaire</term>
<term>Mutation</term>
<term>Phototaxie</term>
<term>Phénotype</term>
<term>Techniques de knock-down de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative disorders with similar clinical manifestations whose precise mechanisms of disease are presently unknown. We created multiple cell lines each with different levels of reduction of expression of the gene coding for the type 2 variant of the disease, Tripeptidyl peptidase (Tpp1), in the cellular slime mould
<i>Dictyostelium discoideum.</i>
Knocking down Tpp1 in
<i>Dictyostelium</i>
resulted in the accumulation of autofluorescent material, a characteristic trait of Batten disease. Phenotypic characterisation of the mutants revealed phenotypic deficiencies in growth and development, whilst endocytic uptake of nutrients was enhanced. Furthermore, the severity of the phenotypes correlated with the expression levels of Tpp1. We propose that the phenotypic defects are due to altered Target of Rapamycin (TOR) signalling. We show that treatment of wild type
<i>Dictyostelium</i>
cells with rapamycin (a specific TOR complex inhibitor) or antisense inhibition of expression of Rheb (Ras homologue enriched in the brain) (an upstream TOR complex activator) phenocopied the Tpp1 mutants. We also show that overexpression of Rheb rescued the defects caused by antisense inhibition of Tpp1. These results suggest that the TOR signalling pathway is responsible for the cytopathological outcomes in the
<i>Dictyostelium</i>
Tpp1 model of Batten disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31100984</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2073-4409</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in
<i>Dictyostelium discoideum</i>
Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E469</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells8050469</ELocationID>
<Abstract>
<AbstractText>The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative disorders with similar clinical manifestations whose precise mechanisms of disease are presently unknown. We created multiple cell lines each with different levels of reduction of expression of the gene coding for the type 2 variant of the disease, Tripeptidyl peptidase (Tpp1), in the cellular slime mould
<i>Dictyostelium discoideum.</i>
Knocking down Tpp1 in
<i>Dictyostelium</i>
resulted in the accumulation of autofluorescent material, a characteristic trait of Batten disease. Phenotypic characterisation of the mutants revealed phenotypic deficiencies in growth and development, whilst endocytic uptake of nutrients was enhanced. Furthermore, the severity of the phenotypes correlated with the expression levels of Tpp1. We propose that the phenotypic defects are due to altered Target of Rapamycin (TOR) signalling. We show that treatment of wild type
<i>Dictyostelium</i>
cells with rapamycin (a specific TOR complex inhibitor) or antisense inhibition of expression of Rheb (Ras homologue enriched in the brain) (an upstream TOR complex activator) phenocopied the Tpp1 mutants. We also show that overexpression of Rheb rescued the defects caused by antisense inhibition of Tpp1. These results suggest that the TOR signalling pathway is responsible for the cytopathological outcomes in the
<i>Dictyostelium</i>
Tpp1 model of Batten disease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Paige K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0002-0750-0468</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. paigeksmith81@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Melodi G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. mgsen@students.latrobe.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fisher</LastName>
<ForeName>Paul R</ForeName>
<Initials>PR</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. P.Fisher@latrobe.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Annesley</LastName>
<ForeName>Sarah J</ForeName>
<Initials>SJ</Initials>
<Identifier Source="ORCID">0000-0002-7604-3985</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia. S.Annesley@latrobe.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016373">DNA, Antisense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016054">DNA, Protozoan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076205">Ras Homolog Enriched in Brain Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D057057">Serine Proteases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.11.-</RegistryNumber>
<NameOfSubstance UI="D000626">Aminopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.-</RegistryNumber>
<NameOfSubstance UI="D004152">Dipeptidyl-Peptidases and Tripeptidyl-Peptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.9</RegistryNumber>
<NameOfSubstance UI="C083762">tripeptidyl-peptidase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000626" MajorTopicYN="N">Aminopeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016373" MajorTopicYN="N">DNA, Antisense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016054" MajorTopicYN="N">DNA, Protozoan</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004023" MajorTopicYN="N">Dictyostelium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004152" MajorTopicYN="N">Dipeptidyl-Peptidases and Tripeptidyl-Peptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009472" MajorTopicYN="N">Neuronal Ceroid-Lipofuscinoses</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061848" MajorTopicYN="N">Optical Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010587" MajorTopicYN="N">Phagocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071444" MajorTopicYN="N">Phototaxis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076205" MajorTopicYN="N">Ras Homolog Enriched in Brain Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057057" MajorTopicYN="N">Serine Proteases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Batten disease</Keyword>
<Keyword MajorTopicYN="Y">CLN2</Keyword>
<Keyword MajorTopicYN="Y">Dictyostelium</Keyword>
<Keyword MajorTopicYN="Y">Tpp1</Keyword>
<Keyword MajorTopicYN="Y">lysosomal storage disease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31100984</ArticleId>
<ArticleId IdType="pii">cells8050469</ArticleId>
<ArticleId IdType="doi">10.3390/cells8050469</ArticleId>
<ArticleId IdType="pmc">PMC6562681</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6098825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2015 Nov 11;2(12):466-480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;571:67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Sep;12(9):2590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1994 Sep;32(2):182-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7846143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2008 Apr 15;316(2):260-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2017 Jul;35:61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28365442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19084560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 17;9(10):e110544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med Genet. 1992 Feb 15;42(4):561-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1535179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1971 Feb;64(2):484-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5542656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Jan 1;125(Pt 1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22266904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Oct;1762(10):906-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17049819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1832(11):1842-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23338040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 May;18(5):1874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2001;333:217-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11400338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Feb;148(Pt 2):413-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):681-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18401543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Oct;1852(10 Pt B):2242-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25962910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2017 Jul 1;10(7):897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Oct;1852(10 Pt B):2267-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25937302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 May 1;382(2):247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19248764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Cell Res. 2018 Jul 23;1865(10):1437-1450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30048658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Feb 24;268(3):904-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2009 Sep;329(1-2):73-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jul 1;26(13):3317-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9628938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2012 Jan;33(1):42-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2005;28(6):1065-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2015 Feb;8(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25540127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2006 Aug;387(8):1091-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2003 Jan;4(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12535269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Dec;70(12):3356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4519628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 May 19;1384(2):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9659384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2018 Jan;42:236-248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29128403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1998;39(2):141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9514707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2006 Apr;27(4):576-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Aug 25;10:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1977 Oct 15;116(1):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">563469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Nov 7;165(1):127-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7489901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1999 Nov;112 ( Pt 21):3833-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2016 Nov 24;23(1):83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27881166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jul 15;10(14):2305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18651095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2017 Oct 1;10(10):1261-1271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28819044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1970 Sep;119(2):171-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5530748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
</list>
<tree>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Smith, Paige K" sort="Smith, Paige K" uniqKey="Smith P" first="Paige K" last="Smith">Paige K. Smith</name>
</region>
<name sortKey="Annesley, Sarah J" sort="Annesley, Sarah J" uniqKey="Annesley S" first="Sarah J" last="Annesley">Sarah J. Annesley</name>
<name sortKey="Fisher, Paul R" sort="Fisher, Paul R" uniqKey="Fisher P" first="Paul R" last="Fisher">Paul R. Fisher</name>
<name sortKey="Sen, Melodi G" sort="Sen, Melodi G" uniqKey="Sen M" first="Melodi G" last="Sen">Melodi G. Sen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31100984
   |texte=   Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in Dictyostelium discoideum Suggests That Cytopathological Outcomes Result from Altered TOR Signalling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31100984" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020